Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172051, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565347

ABSTRACT

Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.


Subject(s)
Phytochemicals , Plant Roots , Plant Roots/microbiology , China , Phytochemicals/analysis , Biodiversity , Rhizosphere , Trees , Microbiota , Forests , Adaptation, Physiological , Climate
2.
J Colloid Interface Sci ; 664: 329-337, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38479269

ABSTRACT

Co9S8 has been extensively studied as a promising catalyst for water electrolysis. Doping Co9S8 with Fe improves its oxygen evolution reaction (OER) performance by regulating the catalyst self-reconfigurability and enhancing the absorption capacity of OER intermediates. However, the poor alkaline hydrogen evolution reaction (HER) properties of Co9S8 limit its application in bifunctional water splitting. Herein, we combined Fe doping and sulfur vacancy engineering to synergistically enhance the bifunctional water-splitting performance of Co9S8. The as-synthesized Co6Fe3S8 catalyst exhibited excellent OER and HER characteristics with low overpotentials of 250 and 84 mV, respectively. It also resulted in the low Tafel slopes of 135 mV dec-1 for the OER and 114 mV dec-1 for the HER. A two-electrode electrolytic cell with Co6Fe3S8 used as both the cathode and anode produced a current density of 10 mA cm-2 at a low voltage of only 1.48 V, maintaining high stability for 100 h. The results of in/ex-situ experiments indicated that the OER process induced electrochemical reconfiguration, forming CoOOH/FeOOH active species on the catalyst surface to enhance its OER performance. Density functional theory (DFT) simulations revealed that Fe doping and the presence of unsaturated coordination metal sites in Co6Fe3S8 promoted H2O and H* adsorption for the HER. The findings of this study can help develop a strategy for designing highly efficient bifunctional water splitting electrocatalysts.

3.
Front Med (Lausanne) ; 10: 1251827, 2023.
Article in English | MEDLINE | ID: mdl-38034531

ABSTRACT

Background: Asthma is a chronic respiratory disease and is often associated with multiple comorbidities. The causal relationship between asthma and these comorbidities is still unclear. This study aimed to investigate the association between genetically predicted asthma and common comorbidities. Methods: After searching PubMed and GWAS summary statistics, we identified 26 comorbidities of asthma. The causal relationship between asthma and comorbidities was assessed in two independent GWASs by bidirectional Mendelian randomization, followed by validation of the results using a multivariate Mendelian randomization analysis and several sensitivity analyses. Results: In the bidirectional Mendelian randomization analysis, chronic sinusitis [odds ratio (OR) = 1.54, p = 1.40 × 10-5], atopic dermatitis (OR = 1.36, p = 9.37 × 10-21), allergic conjunctivitis (OR = 2.07, p = 4.32 × 10-6), and allergic rhinitis (OR = 1.53, p = 5.20 × 10-6) were significantly associated with increased asthma risk. Hyperthyroidism (OR = 1.12, p = 0.04) had a potential increased risk for asthma. For the reverse direction, asthma showed significant associations with an increased risk of chronic obstructive pulmonary disease (OR = 1.24, p = 2.25 × 10-9), chronic sinusitis (OR = 1.61, p = 5.25 × 10-21), atopic dermatitis (OR = 2.11, p = 1.24 × 10-24), allergic conjunctivitis (OR = 1.65, p = 6.66 × 10-35), allergic rhinitis (OR = 1.90, p = 2.38 × 10-57), and a potential higher risk of allergic urticaria (OR = 1.25, p = 0.003). Conclusion: This study suggested a significant bidirectional association of chronic sinusitis, atopic dermatitis, allergic conjunctivitis, and allergic rhinitis with asthma. In addition, hyperthyroidism was associated with an increased risk of asthma and asthma increased the risk of chronic obstructive pulmonary disease and allergic urticaria.

4.
Ecol Lett ; 26(11): 1898-1910, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776563

ABSTRACT

Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.


Subject(s)
Herbivory , Rainforest , Animals , Forests , Plant Leaves , Phylogeny , Insecta
5.
ACS Pharmacol Transl Sci ; 6(7): 943-969, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37470024

ABSTRACT

With the rapid success in the development of mRNA vaccines against COVID-19 and with a number of mRNA-based drugs ahead in the pipelines, mRNA has catapulted to the forefront of drug research, demonstrating its substantial effectiveness against a broad range of diseases. As the recent global pandemic gradually fades, we cannot stop thinking about what the world has gained: the realization and validation of the power of mRNA in modern medicine. A significant amount of research has now been concentrated on developing mRNA drugs and vaccine platforms against infectious and immune diseases, cancer, and other debilitating diseases and has demonstrated encouraging results. Here, based on the CAS Content Collection, we provide a landscape view of the current state, outline trends in the research and development of mRNA therapeutics and vaccines, and highlight some notable patents focusing on mRNA therapeutics, vaccines, and delivery systems. Analysis of diseases disclosed in patents also reveals highly investigated diseases for treatments with these medicines. Finally, we provide information about mRNA therapeutics and vaccines in clinical trials. We hope this Review will be useful for understanding the current knowledge in the field of mRNA medicines and will assist in efforts to solve its remaining challenges and revolutionize the treatment of human diseases.

6.
Plant Divers ; 40(3): 117-126, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30175292

ABSTRACT

Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi (AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths (0-10 cm, 10-20 cm, 20-30 cm). Partial 18S rRNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.

7.
Front Plant Sci ; 8: 2088, 2017.
Article in English | MEDLINE | ID: mdl-29276523

ABSTRACT

Fertilization has been shown to affect interactions between root hemiparasitic plants and their host plants, alleviating damage to the hosts by parasitism. However, as a majority of studies were conducted in pot cultivation, the influence of fertilizer application on root hemiparasites and the surrounding plant community in field conditions as well as relevant mechanisms remain unclear. We manipulated soil nutrient resources in a semi-arid subalpine grassland in the Tianshan Mountains, northwestern China, to explore the links between fertilization and plant community composition, productivity, survival, and growth of a weedy root hemiparasite (Pedicularis kansuensis). Nitrogen (at a low rate, LN, 30 kg N ha-1 year-1 as urea; or at a high rate, HN, 90 kg N ha-1 year-1 as urea) and phosphorus [100 kg ha-1 year-1 as Ca(H2PO4)2⋅H2O] were added during two growing seasons. Patterns of foliar nutrient balances were described with isometric log ratios for the different plant functional groups receiving these fertilization regimes. Fertilization with LN, HN, and P reduced above-ground biomass of P. kansuensis, with above-ground biomass in the fertilization treatments, respectively, 12, 1, and 39% of the value found in the unfertilized control. Up to three times more above-ground biomass was produced in graminoids receiving fertilizers, whereas forb above-ground biomass was virtually unchanged by the fertilization regimes and forb species richness was reduced by 52% in the HN treatment. Fertilization altered foliar nutrient balances, and distinct patterns emerged for each plant functional group. Foliar [C | P,N] balance in the plant community was negatively correlated with above-ground biomass (P = 0.03). The inhibited competitiveness of P. kansuensis, which showed a much higher [C | P,N] balance, could be attributed to reduced C assimilation rather than mineral nutrient acquisition, as shown by significant increase in foliar N and P concentrations but little increase in C concentration following fertilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...